keystoneml.nodes.images.external

EncEvalGMMFisherVectorEstimator

case class EncEvalGMMFisherVectorEstimator(k: Int) extends Estimator[DenseMatrix[Float], DenseMatrix[Float]] with Product with Serializable

Trains an enceval Fisher Vector implementation, via estimating a GMM by treating each column of the inputs as a separate DenseVector input to GaussianMixtureModelEstimator

TODO: Pending philosophical discussions on how to best make it so you can swap in GMM, KMeans++, etc. for Fisher Vectors. For now just hard-codes GMM here

k

Number of centers to estimate.

Linear Supertypes
Product, Equals, Estimator[DenseMatrix[Float], DenseMatrix[Float]], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. EncEvalGMMFisherVectorEstimator
  2. Product
  3. Equals
  4. Estimator
  5. EstimatorOperator
  6. Serializable
  7. Serializable
  8. Operator
  9. AnyRef
  10. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new EncEvalGMMFisherVectorEstimator(k: Int)

    k

    Number of centers to estimate.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def fit(data: RDD[DenseMatrix[Float]]): FisherVector

    The type-safe method that ML developers need to implement when writing new Estimators.

    The type-safe method that ML developers need to implement when writing new Estimators.

    data

    The estimator's training data.

    returns

    A new transformer

    Definition Classes
    EncEvalGMMFisherVectorEstimatorEstimator
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. val k: Int

    Number of centers to estimate.

  15. def label: String

    Definition Classes
    Operator
  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  20. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  21. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def withData(data: PipelineDataset[DenseMatrix[Float]]): Pipeline[DenseMatrix[Float], DenseMatrix[Float]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator
  24. final def withData(data: RDD[DenseMatrix[Float]]): Pipeline[DenseMatrix[Float], DenseMatrix[Float]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator

Inherited from Product

Inherited from Equals

Inherited from Estimator[DenseMatrix[Float], DenseMatrix[Float]]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped