keystoneml.utils

Stats

object Stats extends Serializable

Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Stats
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def aboutEq(a: DenseMatrix[Double], b: DenseMatrix[Double]): Boolean

  7. def aboutEq(a: DenseMatrix[Double], b: DenseMatrix[Double], thresh: Double): Boolean

    Compares two matrices for approximate equality.

    Compares two matrices for approximate equality.

    a

    A matrix.

    b

    A second matrix.

    thresh

    equality threshold

    returns

    True iff all corresponding elements of the two matrices are within thresh of each other.

  8. def aboutEq(as: DenseVector[Double], bs: DenseVector[Double]): Boolean

  9. def aboutEq(as: DenseVector[Double], bs: DenseVector[Double], thresh: Double): Boolean

    Compares two arrays for approximate equality.

    Compares two arrays for approximate equality. Modify margin by setting Stats.thresh.

    as

    A array of numbers.

    bs

    A second array of numbers.

    thresh

    equality threshold

    returns

    True if the two numbers are within thresh of each other.

  10. def aboutEq(a: Double, b: Double): Boolean

  11. def aboutEq(a: Double, b: Double, thresh: Double): Boolean

    Compares two numbers for approximate equality

    Compares two numbers for approximate equality

    a

    A number.

    b

    A second number.

    thresh

    equality threshold

    returns

    True if the two numbers are within thresh of each other.

  12. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  13. def classificationError(predictions: RDD[DenseVector[Double]], actuals: RDD[DenseVector[Double]], k: Int = 1): Double

    Computes top-k classification error based on a distribution of predictions.

    Computes top-k classification error based on a distribution of predictions.

    predictions

    Distribution of predictions.

    actuals

    Distribution of actuals.

    k

    How many classes to include.

    returns

    The error percent.

  14. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  15. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  17. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  18. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  19. def getErrPercent(predicted: RDD[Array[Int]], actual: RDD[Array[Int]], num: Long): Double

    Computes error percent based on array of predicted labels and array of actual labels.

    Computes error percent based on array of predicted labels and array of actual labels.

    predicted

    The predicted labels.

    actual

    The actual labels.

    num

    Total number of examples.

    returns

    Error percent.

  20. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  21. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  22. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  23. def normalizeRows(mat: DenseMatrix[Double], alpha: Double = 1.0): DenseMatrix[Double]

    Given a local matrix, compute the mean and variance of each row.

    Given a local matrix, compute the mean and variance of each row. Subtract the row mean from each row and divide by the sqrt(variance + alpha).

    mat

    Input matrix.

    alpha

    Alpha for the denominator.

    returns

    Normalized Matrix.

  24. final def notify(): Unit

    Definition Classes
    AnyRef
  25. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  26. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  27. val thresh: Double

    Margin to use for comparing numerical values.

  28. def toString(): String

    Definition Classes
    AnyRef → Any
  29. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped