keystoneml.evaluation

Evaluator

trait Evaluator[P, L, E] extends AnyRef

An Evaluator is an object whose "evaluate" method takes a vector of Predictions and a set of Labels (of the same length and order) and returns an "Evaluation" which is specific to the domain (binary classification, multi-label classification, etc.). The Evaluation is typically a set of summary statistics designed to capture the performance of a machine learning pipeline.

Because evaluation typically happens at the end of a pipeline, we support the cartesian product of {RDD, PipelineDataset} for both sets of arguments.

P

Type of Predictions.

L

Type of the Labels.

E

Type of the Evaluation.

Linear Supertypes
AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Evaluator
  2. AnyRef
  3. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def evaluate(predictions: RDD[P], labels: RDD[L]): E

    Generate an evaluation.

    Generate an evaluation.

    predictions

    Predicted values.

    labels

    True labels. (Same order and length and the predictions).

    returns

    An evaluation.

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def evaluate(predictions: PipelineDataset[P], labels: PipelineDataset[L]): E

  11. def evaluate(predictions: RDD[P], labels: PipelineDataset[L]): E

  12. def evaluate(predictions: PipelineDataset[P], labels: RDD[L]): E

  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  21. def toString(): String

    Definition Classes
    AnyRef → Any
  22. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped