keystoneml.evaluation

BinaryClassificationMetrics

case class BinaryClassificationMetrics(tp: Double, fp: Double, tn: Double, fn: Double) extends Product with Serializable

Contains the contingency table for a binary classifier, and provides common metrics such as precision & recall

Similar to MLlib's org.apache.spark.mllib.evaluation.BinaryClassificationMetrics, but only for metrics that can be calculated from the contingency table

tp

True positive count

fp

False positive count

tn

True negative count

fn

False negative count

Linear Supertypes
Serializable, Serializable, Product, Equals, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. BinaryClassificationMetrics
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BinaryClassificationMetrics(tp: Double, fp: Double, tn: Double, fn: Double)

    tp

    True positive count

    fp

    False positive count

    tn

    True negative count

    fn

    False negative count

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def accuracy: Double

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def error: Double

  11. def fScore(beta: Double = 1.0): Double

    Calculate the f_beta-score for the binary classifier

    Calculate the f_beta-score for the binary classifier

    "Measures the effectiveness of retrieval with respect to a user who attaches beta times as much importance to recall as precision" http://en.wikipedia.org/wiki/F1_score

    beta

    Defaults to 1 (so returns the f1-score)

  12. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. val fn: Double

    False negative count

  14. val fp: Double

    False positive count

  15. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. def merge(other: BinaryClassificationMetrics): BinaryClassificationMetrics

    Merge this contingency table with another

  18. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  21. def precision: Double

  22. def recall: Double

  23. def specificity: Double

  24. def summary(format: String = "%2.3f"): String

    Pretty-prints a summary of how the multiclass classifier did (including the confusion matrix)

    Pretty-prints a summary of how the multiclass classifier did (including the confusion matrix)

    returns

    the pretty-printed string

  25. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  26. val tn: Double

    True negative count

  27. val tp: Double

    True positive count

  28. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from AnyRef

Inherited from Any

Ungrouped