keystoneml.nodes.nlp

StupidBackoffModel

class StupidBackoffModel[T] extends Transformer[(NGram[T], Int), (NGram[T], Double)]

Linear Supertypes
Transformer[(NGram[T], Int), (NGram[T], Double)], Chainable[(NGram[T], Int), (NGram[T], Double)], TransformerOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. StupidBackoffModel
  2. Transformer
  3. Chainable
  4. TransformerOperator
  5. Serializable
  6. Serializable
  7. Operator
  8. AnyRef
  9. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new StupidBackoffModel(scoresRDD: RDD[(NGram[T], Double)], ngramCounts: RDD[(NGram[T], Int)], indexer: BackoffIndexer[T, NGram[T]], unigramCounts: Map[T, Int], numTokens: Int, alpha: Double = 0.4)(implicit arg0: ClassTag[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val alpha: Double

  7. final def andThen[C, L](est: LabelEstimator[(NGram[T], Double), C, L], data: PipelineDataset[(NGram[T], Int)], labels: PipelineDataset[L]): Pipeline[(NGram[T], Int), C]

    Chains a label estimator onto the end of this pipeline, producing a new pipeline.

    Chains a label estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.

    est

    The estimator to chain onto the end of this pipeline

    data

    The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)

    labels

    The labels to use when fitting the LabelEstimator. Must be zippable with the training data.

    Definition Classes
    Chainable
  8. final def andThen[C, L](est: LabelEstimator[(NGram[T], Double), C, L], data: RDD[(NGram[T], Int)], labels: PipelineDataset[L]): Pipeline[(NGram[T], Int), C]

    Chains a label estimator onto the end of this pipeline, producing a new pipeline.

    Chains a label estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.

    est

    The estimator to chain onto the end of this pipeline

    data

    The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)

    labels

    The labels to use when fitting the LabelEstimator. Must be zippable with the training data.

    Definition Classes
    Chainable
  9. final def andThen[C, L](est: LabelEstimator[(NGram[T], Double), C, L], data: PipelineDataset[(NGram[T], Int)], labels: RDD[L]): Pipeline[(NGram[T], Int), C]

    Chains a label estimator onto the end of this pipeline, producing a new pipeline.

    Chains a label estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.

    est

    The estimator to chain onto the end of this pipeline

    data

    The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)

    labels

    The labels to use when fitting the LabelEstimator. Must be zippable with the training data.

    Definition Classes
    Chainable
  10. final def andThen[C, L](est: LabelEstimator[(NGram[T], Double), C, L], data: RDD[(NGram[T], Int)], labels: RDD[L]): Pipeline[(NGram[T], Int), C]

    Chains a label estimator onto the end of this pipeline, producing a new pipeline.

    Chains a label estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.

    est

    The estimator to chain onto the end of this pipeline

    data

    The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)

    labels

    The labels to use when fitting the LabelEstimator. Must be zippable with the training data.

    Definition Classes
    Chainable
  11. final def andThen[C](est: Estimator[(NGram[T], Double), C], data: PipelineDataset[(NGram[T], Int)]): Pipeline[(NGram[T], Int), C]

    Chains an estimator onto the end of this pipeline, producing a new pipeline.

    Chains an estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.

    est

    The estimator to chain onto the end of this pipeline

    data

    The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)

    Definition Classes
    Chainable
  12. final def andThen[C](est: Estimator[(NGram[T], Double), C], data: RDD[(NGram[T], Int)]): Pipeline[(NGram[T], Int), C]

    Chains an estimator onto the end of this pipeline, producing a new pipeline.

    Chains an estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.

    est

    The estimator to chain onto the end of this pipeline

    data

    The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)

    Definition Classes
    Chainable
  13. final def andThen[C](next: Chainable[(NGram[T], Double), C]): Pipeline[(NGram[T], Int), C]

    Chains a pipeline onto the end of this one, producing a new pipeline.

    Chains a pipeline onto the end of this one, producing a new pipeline. If either this pipeline or the following has already been executed, it will not need to be fit again.

    next

    the pipeline to chain

    Definition Classes
    Chainable
  14. def apply(ignored: (NGram[T], Int)): (NGram[T], Double)

    The application of this Transformer to a single input item.

    The application of this Transformer to a single input item. This method MUST be overridden by ML developers.

    returns

    The output value

    Definition Classes
    StupidBackoffModelTransformer
  15. def apply(ignored: RDD[(NGram[T], Int)]): RDD[(NGram[T], Double)]

    The application of this Transformer to an RDD of input items.

    The application of this Transformer to an RDD of input items. This method may optionally be overridden by ML developers.

    returns

    The bulk RDD output for the given input

    Definition Classes
    StupidBackoffModelTransformer
  16. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  17. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  18. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  19. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  20. def execute(deps: Seq[Expression]): Expression

    Definition Classes
    TransformerOperator → Operator
  21. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  22. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  23. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  24. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  25. def label: String

    Definition Classes
    Operator
  26. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  27. val ngramCounts: RDD[(NGram[T], Int)]

  28. final def notify(): Unit

    Definition Classes
    AnyRef
  29. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  30. val numTokens: Int

  31. def score(ngram: NGram[T]): Double

  32. val scoresRDD: RDD[(NGram[T], Double)]

  33. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  34. def toPipeline: Pipeline[(NGram[T], Int), (NGram[T], Double)]

    A method that converts this object into a Pipeline.

    A method that converts this object into a Pipeline. Must be implemented by anything that extends Chainable.

    Definition Classes
    TransformerChainable
  35. def toString(): String

    Definition Classes
    AnyRef → Any
  36. val unigramCounts: Map[T, Int]

  37. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Transformer[(NGram[T], Int), (NGram[T], Double)]

Inherited from Chainable[(NGram[T], Int), (NGram[T], Double)]

Inherited from TransformerOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped