keystoneml.nodes.learning

SparseLBFGSwithL2

class SparseLBFGSwithL2 extends LabelEstimator[SparseVector[Double], DenseVector[Double], DenseVector[Double]] with WeightedNode with CostModel

Class used to solve an optimization problem using Limited-memory BFGS. Reference: http://en.wikipedia.org/wiki/Limited-memory_BFGS

Linear Supertypes
CostModel, WeightedNode, LabelEstimator[SparseVector[Double], DenseVector[Double], DenseVector[Double]], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. SparseLBFGSwithL2
  2. CostModel
  3. WeightedNode
  4. LabelEstimator
  5. EstimatorOperator
  6. Serializable
  7. Serializable
  8. Operator
  9. AnyRef
  10. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new SparseLBFGSwithL2(gradient: SparseGradient, fitIntercept: Boolean = true, numCorrections: Int = 10, convergenceTol: Double = 1.0E-4, numIterations: Int = 100, regParam: Double = 0.0, sparseOverhead: Double = 8)

    gradient

    Gradient function to be used.

    fitIntercept

    Whether to fit the intercepts or not.

    numCorrections

    3 < numCorrections < 10 is recommended.

    convergenceTol

    convergence tolerance for L-BFGS

    numIterations

    max number of iterations to run

    regParam

    L2 regularization

    sparseOverhead

    The cost model overhead for how much more expensive a sparse operation on dense data is compared to the respective dense operation

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. val convergenceTol: Double

    convergence tolerance for L-BFGS

  9. def cost(n: Long, d: Int, k: Int, sparsity: Double, numMachines: Int, cpuWeight: Double, memWeight: Double, networkWeight: Double): Double

    Definition Classes
    SparseLBFGSwithL2CostModel
  10. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  12. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. def fit(data: RDD[SparseVector[Double]], labels: RDD[DenseVector[Double]]): SparseLinearMapper

    The type-safe method that ML developers need to implement when writing new Estimators.

    The type-safe method that ML developers need to implement when writing new Estimators.

    data

    The estimator's training data.

    labels

    The estimator's training labels

    returns

    A new transformer

    Definition Classes
    SparseLBFGSwithL2LabelEstimator
  15. val fitIntercept: Boolean

    Whether to fit the intercepts or not.

  16. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  17. val gradient: SparseGradient

    Gradient function to be used.

  18. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  19. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  20. def label: String

    Definition Classes
    Operator
  21. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  22. final def notify(): Unit

    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  24. val numCorrections: Int

    3 < numCorrections < 10 is recommended.

  25. val numIterations: Int

    max number of iterations to run

  26. val regParam: Double

    L2 regularization

  27. val sparseOverhead: Double

    The cost model overhead for how much more expensive a sparse operation on dense data is compared to the respective dense operation

  28. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  29. def toString(): String

    Definition Classes
    AnyRef → Any
  30. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. val weight: Int

    Definition Classes
    SparseLBFGSwithL2WeightedNode
  34. final def withData(data: PipelineDataset[SparseVector[Double]], labels: PipelineDataset[DenseVector[Double]]): Pipeline[SparseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  35. final def withData(data: RDD[SparseVector[Double]], labels: RDD[DenseVector[Double]]): Pipeline[SparseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  36. final def withData(data: PipelineDataset[SparseVector[Double]], labels: RDD[DenseVector[Double]]): Pipeline[SparseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  37. final def withData(data: RDD[SparseVector[Double]], labels: PipelineDataset[DenseVector[Double]]): Pipeline[SparseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator

Inherited from CostModel

Inherited from WeightedNode

Inherited from LabelEstimator[SparseVector[Double], DenseVector[Double], DenseVector[Double]]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped