keystoneml.nodes.learning

NaiveBayesEstimator

case class NaiveBayesEstimator[T <: Vector[Double]](numClasses: Int, lambda: Double = 1.0)(implicit evidence$1: ClassTag[T]) extends LabelEstimator[T, DenseVector[Double], Int] with Product with Serializable

A LabelEstimator which learns a multinomial naive bayes model from training data. Outputs a Transformer that maps features to vectors containing the log-posterior-probabilities of the various classes according to the learned model.

lambda

The lambda parameter to use for the naive bayes model

Linear Supertypes
Product, Equals, LabelEstimator[T, DenseVector[Double], Int], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. NaiveBayesEstimator
  2. Product
  3. Equals
  4. LabelEstimator
  5. EstimatorOperator
  6. Serializable
  7. Serializable
  8. Operator
  9. AnyRef
  10. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new NaiveBayesEstimator(numClasses: Int, lambda: Double = 1.0)(implicit arg0: ClassTag[T])

    lambda

    The lambda parameter to use for the naive bayes model

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def fit(in: RDD[T], labels: RDD[Int]): NaiveBayesModel[T]

    The type-safe method that ML developers need to implement when writing new Estimators.

    The type-safe method that ML developers need to implement when writing new Estimators.

    labels

    The estimator's training labels

    returns

    A new transformer

    Definition Classes
    NaiveBayesEstimatorLabelEstimator
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  14. def label: String

    Definition Classes
    Operator
  15. val lambda: Double

    The lambda parameter to use for the naive bayes model

  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. val numClasses: Int

  20. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  21. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  22. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def withData(data: PipelineDataset[T], labels: PipelineDataset[Int]): Pipeline[T, DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  25. final def withData(data: RDD[T], labels: RDD[Int]): Pipeline[T, DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  26. final def withData(data: PipelineDataset[T], labels: RDD[Int]): Pipeline[T, DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  27. final def withData(data: RDD[T], labels: PipelineDataset[Int]): Pipeline[T, DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator

Inherited from Product

Inherited from Equals

Inherited from LabelEstimator[T, DenseVector[Double], Int]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped