keystoneml.nodes.learning

LogisticRegressionEstimator

case class LogisticRegressionEstimator[T <: Vector[Double]](numClasses: Int, regParam: Double = 0, numIters: Int = 100, convergenceTol: Double = 1.0E-4, numFeatures: Int = -1)(implicit evidence$1: ClassTag[T]) extends LabelEstimator[T, Double, Int] with Product with Serializable

A LabelEstimator which learns a Logistic Regression model from training data. Currently does so using LBFG-S

numClasses

The number of classes

numIters

The max number of iterations to use. Default 100

convergenceTol

Set the convergence tolerance of iterations for the optimizer. Default 1E-4.

Linear Supertypes
Product, Equals, LabelEstimator[T, Double, Int], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LogisticRegressionEstimator
  2. Product
  3. Equals
  4. LabelEstimator
  5. EstimatorOperator
  6. Serializable
  7. Serializable
  8. Operator
  9. AnyRef
  10. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LogisticRegressionEstimator(numClasses: Int, regParam: Double = 0, numIters: Int = 100, convergenceTol: Double = 1.0E-4, numFeatures: Int = -1)(implicit arg0: ClassTag[T])

    numClasses

    The number of classes

    numIters

    The max number of iterations to use. Default 100

    convergenceTol

    Set the convergence tolerance of iterations for the optimizer. Default 1E-4.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. val convergenceTol: Double

    Set the convergence tolerance of iterations for the optimizer.

    Set the convergence tolerance of iterations for the optimizer. Default 1E-4.

  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. def fit(in: RDD[T], labels: RDD[Int]): LogisticRegressionModel[T]

    The type-safe method that ML developers need to implement when writing new Estimators.

    The type-safe method that ML developers need to implement when writing new Estimators.

    labels

    The estimator's training labels

    returns

    A new transformer

    Definition Classes
    LogisticRegressionEstimatorLabelEstimator
  13. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. def label: String

    Definition Classes
    Operator
  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. val numClasses: Int

    The number of classes

  20. val numFeatures: Int

  21. val numIters: Int

    The max number of iterations to use.

    The max number of iterations to use. Default 100

  22. val regParam: Double

  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  24. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def withData(data: PipelineDataset[T], labels: PipelineDataset[Int]): Pipeline[T, Double]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  28. final def withData(data: RDD[T], labels: RDD[Int]): Pipeline[T, Double]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  29. final def withData(data: PipelineDataset[T], labels: RDD[Int]): Pipeline[T, Double]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  30. final def withData(data: RDD[T], labels: PipelineDataset[Int]): Pipeline[T, Double]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator

Inherited from Product

Inherited from Equals

Inherited from LabelEstimator[T, Double, Int]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped