trained model
optional intercept to add
optional scaler to apply to data before applying the model
Chains a label estimator onto the end of this pipeline, producing a new pipeline.
Chains a label estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.
The estimator to chain onto the end of this pipeline
The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)
The labels to use when fitting the LabelEstimator. Must be zippable with the training data.
Chains a label estimator onto the end of this pipeline, producing a new pipeline.
Chains a label estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.
The estimator to chain onto the end of this pipeline
The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)
The labels to use when fitting the LabelEstimator. Must be zippable with the training data.
Chains a label estimator onto the end of this pipeline, producing a new pipeline.
Chains a label estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.
The estimator to chain onto the end of this pipeline
The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)
The labels to use when fitting the LabelEstimator. Must be zippable with the training data.
Chains a label estimator onto the end of this pipeline, producing a new pipeline.
Chains a label estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.
The estimator to chain onto the end of this pipeline
The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)
The labels to use when fitting the LabelEstimator. Must be zippable with the training data.
Chains an estimator onto the end of this pipeline, producing a new pipeline.
Chains an estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.
The estimator to chain onto the end of this pipeline
The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)
Chains an estimator onto the end of this pipeline, producing a new pipeline.
Chains an estimator onto the end of this pipeline, producing a new pipeline. If this pipeline has already been executed, it will not need to be fit again.
The estimator to chain onto the end of this pipeline
The training data to use (the estimator will be fit on the result of passing this data through the current pipeline)
Chains a pipeline onto the end of this one, producing a new pipeline.
Chains a pipeline onto the end of this one, producing a new pipeline. If either this pipeline or the following has already been executed, it will not need to be fit again.
the pipeline to chain
Apply a linear model to a collection of inputs.
Apply a linear model to a collection of inputs.
Collection of A's.
Collection of B's.
Apply a linear model to an input.
Apply a linear model to an input.
Input.
Output.
optional intercept to add
optional scaler to apply to data before applying the model
A method that converts this object into a Pipeline.
A method that converts this object into a Pipeline. Must be implemented by anything that extends Chainable.
trained model
Computes A * x + b i.e. a linear map of data using a trained model.
trained model
optional intercept to add
optional scaler to apply to data before applying the model