keystoneml.nodes.learning

LeastSquaresEstimator

class LeastSquaresEstimator[T <: Vector[Double]] extends OptimizableLabelEstimator[T, DenseVector[Double], DenseVector[Double]] with WeightedNode with Logging

A least squares solver that is optimized to use a fast algorithm, based on characteristics of the workload and cost models.

Currently selects between Dense LBFGS, Sparse LBFGS, Exact Distributed Solve, and Approximate Block Solve.

The default weights were determined empirically via results run on a 16 r3.4xlarge node cluster.

T

Linear Supertypes
Logging, WeightedNode, OptimizableLabelEstimator[T, DenseVector[Double], DenseVector[Double]], Optimizable, LabelEstimator[T, DenseVector[Double], DenseVector[Double]], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. LeastSquaresEstimator
  2. Logging
  3. WeightedNode
  4. OptimizableLabelEstimator
  5. Optimizable
  6. LabelEstimator
  7. EstimatorOperator
  8. Serializable
  9. Serializable
  10. Operator
  11. AnyRef
  12. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LeastSquaresEstimator(lambda: Double = 0, numMachines: Option[Int] = scala.None, cpuWeight: Double = 3.8E-4, memWeight: Double = 0.29, networkWeight: Double = 1.32)(implicit arg0: ClassTag[T])

    lambda

    The L2 regularization parameter to use, defaults to 0

    numMachines
    cpuWeight
    memWeight
    networkWeight

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. val default: LabelEstimator[T, DenseVector[Double], DenseVector[Double]] with WeightedNode

  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  12. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def fit(data: RDD[T], labels: RDD[DenseVector[Double]]): Transformer[T, DenseVector[Double]]

    The type-safe method that ML developers need to implement when writing new Estimators.

    The type-safe method that ML developers need to implement when writing new Estimators.

    data

    The estimator's training data.

    labels

    The estimator's training labels

    returns

    A new transformer

    Definition Classes
    OptimizableLabelEstimatorLabelEstimator
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. def label: String

    Definition Classes
    Operator
  18. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  19. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  28. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  29. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  30. final def notify(): Unit

    Definition Classes
    AnyRef
  31. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  32. def optimize(sample: RDD[T], sampleLabels: RDD[DenseVector[Double]], numPerPartition: Map[Int, Int]): LabelEstimator[T, DenseVector[Double], DenseVector[Double]]

  33. val options: Seq[(CostModel, LabelEstimator[T, DenseVector[Double], DenseVector[Double]])]

  34. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  35. def toString(): String

    Definition Classes
    AnyRef → Any
  36. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. val weight: Int

    Definition Classes
    LeastSquaresEstimatorWeightedNode
  40. final def withData(data: PipelineDataset[T], labels: PipelineDataset[DenseVector[Double]]): Pipeline[T, DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  41. final def withData(data: RDD[T], labels: RDD[DenseVector[Double]]): Pipeline[T, DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  42. final def withData(data: PipelineDataset[T], labels: RDD[DenseVector[Double]]): Pipeline[T, DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  43. final def withData(data: RDD[T], labels: PipelineDataset[DenseVector[Double]]): Pipeline[T, DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator

Inherited from Logging

Inherited from WeightedNode

Inherited from OptimizableLabelEstimator[T, DenseVector[Double], DenseVector[Double]]

Inherited from Optimizable

Inherited from LabelEstimator[T, DenseVector[Double], DenseVector[Double]]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped