keystoneml.nodes.learning

KMeansPlusPlusEstimator

case class KMeansPlusPlusEstimator(numMeans: Int, maxIterations: Int, stopTolerance: Double = 0.001, seed: Int = 0) extends Estimator[DenseVector[Double], DenseVector[Double]] with Logging with Product with Serializable

Trains a k-means++ transformer

if you run for one round, this is the same as the k-means++ initialization. If you run for more rounds, you are running Lloyd's algorithm with the k-means++ initialization scheme.

numMeans
maxIterations
stopTolerance

Tolerance used to decide when to terminate Lloyd's algorithm

Linear Supertypes
Product, Equals, Logging, Estimator[DenseVector[Double], DenseVector[Double]], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. KMeansPlusPlusEstimator
  2. Product
  3. Equals
  4. Logging
  5. Estimator
  6. EstimatorOperator
  7. Serializable
  8. Serializable
  9. Operator
  10. AnyRef
  11. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new KMeansPlusPlusEstimator(numMeans: Int, maxIterations: Int, stopTolerance: Double = 0.001, seed: Int = 0)

    numMeans
    maxIterations
    stopTolerance

    Tolerance used to decide when to terminate Lloyd's algorithm

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def fit(X: DenseMatrix[Double]): KMeansModel

  12. def fit(data: RDD[DenseVector[Double]]): KMeansModel

    The type-safe method that ML developers need to implement when writing new Estimators.

    The type-safe method that ML developers need to implement when writing new Estimators.

    data

    The estimator's training data.

    returns

    A new transformer

    Definition Classes
    KMeansPlusPlusEstimatorEstimator
  13. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. def label: String

    Definition Classes
    Operator
  16. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. val maxIterations: Int

  28. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  29. final def notify(): Unit

    Definition Classes
    AnyRef
  30. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  31. val numMeans: Int

  32. val seed: Int

  33. val stopTolerance: Double

    Tolerance used to decide when to terminate Lloyd's algorithm

  34. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  35. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def withData(data: PipelineDataset[DenseVector[Double]]): Pipeline[DenseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator
  39. final def withData(data: RDD[DenseVector[Double]]): Pipeline[DenseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator

Inherited from Product

Inherited from Equals

Inherited from Logging

Inherited from Estimator[DenseVector[Double], DenseVector[Double]]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped