keystoneml.nodes.learning

GaussianMixtureModelEstimator

case class GaussianMixtureModelEstimator(k: Int, maxIterations: Int = 100, minClusterSize: Int = 40, stopTolerance: Double = 1.0E-4, weightThreshold: Double = 1.0E-4, smallVarianceThreshold: Double = 0.01, absoluteVarianceThreshold: Double = 1.0E-9, initializationMethod: GMMInitializationMethod = KMEANS_PLUS_PLUS_INITIALIZATION, seed: Int = 0) extends Estimator[DenseVector[Double], DenseVector[Double]] with Logging with Product with Serializable

Fit a Gaussian Mixture model to Data. We assume diagonal covariances.

Trains the GMM using the guidelines described in Appendix B of:

Jorge Sanchez, Florent Perronnin, Thomas Mensink, Jakob Verbeek. Image Classification with the Fisher Vector: Theory and Practice. International Journal of Computer Vision, Springer Verlag, 2013, 105 (3), pp.222-245. <10.1007/s11263-013-0636-x>.

k

Number of centers to estimate.

Linear Supertypes
Product, Equals, Logging, Estimator[DenseVector[Double], DenseVector[Double]], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GaussianMixtureModelEstimator
  2. Product
  3. Equals
  4. Logging
  5. Estimator
  6. EstimatorOperator
  7. Serializable
  8. Serializable
  9. Operator
  10. AnyRef
  11. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GaussianMixtureModelEstimator(k: Int, maxIterations: Int = 100, minClusterSize: Int = 40, stopTolerance: Double = 1.0E-4, weightThreshold: Double = 1.0E-4, smallVarianceThreshold: Double = 0.01, absoluteVarianceThreshold: Double = 1.0E-9, initializationMethod: GMMInitializationMethod = KMEANS_PLUS_PLUS_INITIALIZATION, seed: Int = 0)

    k

    Number of centers to estimate.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. val absoluteVarianceThreshold: Double

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. def fit(samples: Array[DenseVector[Double]]): GaussianMixtureModel

    Fit a Gaussian mixture model with k centers to a sample array.

    Fit a Gaussian mixture model with k centers to a sample array.

    samples

    Sample Array - all elements must be the same size.

    returns

    A Gaussian Mixture Model.

  13. def fit(samples: RDD[DenseVector[Double]]): GaussianMixtureModel

    Currently this model works on items that fit in local memory.

    Currently this model works on items that fit in local memory.

    samples
    returns

    A PipelineNode (Transformer) which can be called on new data.

    Definition Classes
    GaussianMixtureModelEstimatorEstimator
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. val initializationMethod: GMMInitializationMethod

  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. val k: Int

    Number of centers to estimate.

  18. def label: String

    Definition Classes
    Operator
  19. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  20. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  28. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  29. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  30. val maxIterations: Int

  31. val minClusterSize: Int

  32. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  33. final def notify(): Unit

    Definition Classes
    AnyRef
  34. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  35. val seed: Int

  36. val smallVarianceThreshold: Double

  37. val stopTolerance: Double

  38. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  39. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  41. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  42. val weightThreshold: Double

  43. final def withData(data: PipelineDataset[DenseVector[Double]]): Pipeline[DenseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator
  44. final def withData(data: RDD[DenseVector[Double]]): Pipeline[DenseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator

Inherited from Product

Inherited from Equals

Inherited from Logging

Inherited from Estimator[DenseVector[Double], DenseVector[Double]]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped