keystoneml.nodes.learning

GaussianKernelGenerator

class GaussianKernelGenerator extends KernelGenerator[DenseVector[Double]] with Serializable with Logging

Gaussian (RBF) kernel generator. The RBF kernel on two samples x, y is K(x, y) = exp(-||x - y||^2 * gamma)

Linear Supertypes
Logging, Serializable, Serializable, KernelGenerator[DenseVector[Double]], AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GaussianKernelGenerator
  2. Logging
  3. Serializable
  4. Serializable
  5. KernelGenerator
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GaussianKernelGenerator(gamma: Double, cacheKernel: Boolean = false)

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def fit(trainData: RDD[DenseVector[Double]]): GaussianKernelTransformer

    Create a kernel transformer using the given dataset as one of the arguments to the kernel function.

    Create a kernel transformer using the given dataset as one of the arguments to the kernel function. That is, if the kernel function is \phi(x, y), this binds one of the arguments using the given data.

    trainData

    training data matrix to be used for kernel transformation

    returns

    a kernel transformer that can be applied to train or test data

    Definition Classes
    GaussianKernelGeneratorKernelGenerator
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  16. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  29. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  30. def toString(): String

    Definition Classes
    AnyRef → Any
  31. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from KernelGenerator[DenseVector[Double]]

Inherited from AnyRef

Inherited from Any

Ungrouped