keystoneml.nodes.learning

DistributedColumnPCAEstimator

case class DistributedColumnPCAEstimator(dims: Int) extends Estimator[DenseMatrix[Float], DenseMatrix[Float]] with CostModel with Product with Serializable

Estimates a PCA model for dimensionality reduction based on a sample of a larger input dataset, using a distributed PCA algorithm. Treats each column of the input matrices like a separate DenseVector input to DistributedPCAEstimator.

dims

Dimensions to reduce input dataset to.

Linear Supertypes
Product, Equals, CostModel, Estimator[DenseMatrix[Float], DenseMatrix[Float]], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. DistributedColumnPCAEstimator
  2. Product
  3. Equals
  4. CostModel
  5. Estimator
  6. EstimatorOperator
  7. Serializable
  8. Serializable
  9. Operator
  10. AnyRef
  11. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DistributedColumnPCAEstimator(dims: Int)

    dims

    Dimensions to reduce input dataset to.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def cost(n: Long, d: Int, k: Int, sparsity: Double, numMachines: Int, cpuWeight: Double, memWeight: Double, networkWeight: Double): Double

  9. val dims: Int

    Dimensions to reduce input dataset to.

  10. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  11. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  12. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def fit(data: RDD[DenseMatrix[Float]]): Transformer[DenseMatrix[Float], DenseMatrix[Float]]

    The type-safe method that ML developers need to implement when writing new Estimators.

    The type-safe method that ML developers need to implement when writing new Estimators.

    data

    The estimator's training data.

    returns

    A new transformer

    Definition Classes
    DistributedColumnPCAEstimatorEstimator
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. def label: String

    Definition Classes
    Operator
  17. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  18. final def notify(): Unit

    Definition Classes
    AnyRef
  19. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  20. val pcaEstimator: DistributedPCAEstimator

  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  22. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def withData(data: PipelineDataset[DenseMatrix[Float]]): Pipeline[DenseMatrix[Float], DenseMatrix[Float]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator
  26. final def withData(data: RDD[DenseMatrix[Float]]): Pipeline[DenseMatrix[Float], DenseMatrix[Float]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator

Inherited from Product

Inherited from Equals

Inherited from CostModel

Inherited from Estimator[DenseMatrix[Float], DenseMatrix[Float]]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped