keystoneml.nodes.learning

BlockWeightedLeastSquaresEstimator

object BlockWeightedLeastSquaresEstimator extends Logging with Serializable

Linear Supertypes
Serializable, Serializable, Logging, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. BlockWeightedLeastSquaresEstimator
  2. Serializable
  3. Serializable
  4. Logging
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def addPairMatrices(a: (DenseMatrix[Double], DenseMatrix[Double]), b: (DenseMatrix[Double], DenseMatrix[Double])): (DenseMatrix[Double], DenseMatrix[Double])

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def groupByClasses(features: Seq[RDD[DenseVector[Double]]], labels: RDD[DenseVector[Double]]): (Seq[RDD[DenseVector[Double]]], RDD[DenseVector[Double]])

  14. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  16. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  17. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  18. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  19. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  28. final def notify(): Unit

    Definition Classes
    AnyRef
  29. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  30. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  31. def toString(): String

    Definition Classes
    AnyRef → Any
  32. def trainWithL2(trainingFeatures: Seq[RDD[DenseVector[Double]]], trainingLabels: RDD[DenseVector[Double]], blockSize: Int, numIter: Int, lambda: Double, mixtureWeight: Double): BlockLinearMapper

    Returns a weighted block-coordinate descent model using least squares NOTE: This function assumes that the trainingFeatures have been partitioned by their class index.

    Returns a weighted block-coordinate descent model using least squares NOTE: This function assumes that the trainingFeatures have been partitioned by their class index. i.e. each partition of training data contains data for a single class

    NOTE: This function makes multiple passes over the training data. Caching @trainingFeatures and @trainingLabels before calling this function is recommended.

    trainingFeatures

    Blocks of training data RDDs

    trainingLabels

    training labels RDD

    numIter

    number of passes of co-ordinate descent to run

    lambda

    regularization parameter

    mixtureWeight

    how much should positive samples be weighted

  33. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from Logging

Inherited from AnyRef

Inherited from Any

Ungrouped