keystoneml.nodes.learning

BlockLeastSquaresEstimator

class BlockLeastSquaresEstimator extends LabelEstimator[DenseVector[Double], DenseVector[Double], DenseVector[Double]] with WeightedNode with CostModel

Fits a least squares model using block coordinate descent with provided training features and labels

Linear Supertypes
CostModel, WeightedNode, LabelEstimator[DenseVector[Double], DenseVector[Double], DenseVector[Double]], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. BlockLeastSquaresEstimator
  2. CostModel
  3. WeightedNode
  4. LabelEstimator
  5. EstimatorOperator
  6. Serializable
  7. Serializable
  8. Operator
  9. AnyRef
  10. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new BlockLeastSquaresEstimator(blockSize: Int, numIter: Int, lambda: Double = 0.0, numFeaturesOpt: Option[Int] = scala.None)

    blockSize

    size of block to use in the solver

    numIter

    number of iterations of solver to run

    lambda

    L2-regularization to use

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def cost(n: Long, d: Int, k: Int, sparsity: Double, numMachines: Int, cpuWeight: Double, memWeight: Double, networkWeight: Double): Double

    Definition Classes
    BlockLeastSquaresEstimatorCostModel
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  12. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def fit(trainingFeatures: RDD[DenseVector[Double]], trainingLabels: RDD[DenseVector[Double]], numFeaturesOpt: Option[Int]): BlockLinearMapper

  14. def fit(trainingFeatures: RDD[DenseVector[Double]], trainingLabels: RDD[DenseVector[Double]]): BlockLinearMapper

    Fit a model after splitting training data into appropriate blocks.

    Fit a model after splitting training data into appropriate blocks.

    trainingFeatures

    training data to use in one RDD.

    trainingLabels

    labels for training data in a RDD.

    returns

    A new transformer

    Definition Classes
    BlockLeastSquaresEstimatorLabelEstimator
  15. def fit(trainingFeatures: Seq[RDD[DenseVector[Double]]], trainingLabels: RDD[DenseVector[Double]]): BlockLinearMapper

    Fit a model using blocks of features and labels provided.

    Fit a model using blocks of features and labels provided.

    trainingFeatures

    feature blocks to use in RDDs.

    trainingLabels

    RDD of labels to use.

  16. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  17. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  18. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  19. def label: String

    Definition Classes
    Operator
  20. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  24. def toString(): String

    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. val weight: Int

  29. final def withData(data: PipelineDataset[DenseVector[Double]], labels: PipelineDataset[DenseVector[Double]]): Pipeline[DenseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  30. final def withData(data: RDD[DenseVector[Double]], labels: RDD[DenseVector[Double]]): Pipeline[DenseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  31. final def withData(data: PipelineDataset[DenseVector[Double]], labels: RDD[DenseVector[Double]]): Pipeline[DenseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator
  32. final def withData(data: RDD[DenseVector[Double]], labels: PipelineDataset[DenseVector[Double]]): Pipeline[DenseVector[Double], DenseVector[Double]]

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this label estimator to training data and labels, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    labels

    The training labels

    returns

    A pipeline that fits this label estimator and applies the result to inputs.

    Definition Classes
    LabelEstimator

Inherited from CostModel

Inherited from WeightedNode

Inherited from LabelEstimator[DenseVector[Double], DenseVector[Double], DenseVector[Double]]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped