keystoneml.nodes.learning

ApproximatePCAEstimator

class ApproximatePCAEstimator extends Estimator[DenseVector[Float], DenseVector[Float]] with Logging

Approximately estimates a PCA model for dimensionality reduction based on an input dataset.

Linear Supertypes
Logging, Estimator[DenseVector[Float], DenseVector[Float]], EstimatorOperator, Serializable, Serializable, Operator, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. ApproximatePCAEstimator
  2. Logging
  3. Estimator
  4. EstimatorOperator
  5. Serializable
  6. Serializable
  7. Operator
  8. AnyRef
  9. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new ApproximatePCAEstimator(dims: Int, q: Int = 10, p: Int = 5)

    dims

    Dimensions to reduce input dataset to.

    q

    The number of iterations to use

    p

    The amount of padding to add beyond dims for the calculations

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def approximatePCA(data: DenseMatrix[Float], k: Int, q: Int = 10, p: Int = 5): DenseMatrix[Float]

  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. def execute(deps: Seq[Expression]): TransformerExpression

    Definition Classes
    EstimatorOperator → Operator
  12. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. def fit(samples: RDD[DenseVector[Float]]): PCATransformer

    Computes the PCA using a sketch-based algorithm.

    Computes the PCA using a sketch-based algorithm.

    samples

    A sample of features to be reduced. Often O(1e6). Logically row-major.

    returns

    A PCA Matrix which will perform dimensionality reduction when applied to a data matrix.

    Definition Classes
    ApproximatePCAEstimatorEstimator
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. def label: String

    Definition Classes
    Operator
  18. def log: Logger

    Attributes
    protected
    Definition Classes
    Logging
  19. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  20. def logDebug(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  21. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  22. def logError(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  23. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  24. def logInfo(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  25. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  26. def logTrace(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  27. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Attributes
    protected
    Definition Classes
    Logging
  28. def logWarning(msg: ⇒ String): Unit

    Attributes
    protected
    Definition Classes
    Logging
  29. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  30. final def notify(): Unit

    Definition Classes
    AnyRef
  31. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  32. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  33. def toString(): String

    Definition Classes
    AnyRef → Any
  34. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  36. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  37. final def withData(data: PipelineDataset[DenseVector[Float]]): Pipeline[DenseVector[Float], DenseVector[Float]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator
  38. final def withData(data: RDD[DenseVector[Float]]): Pipeline[DenseVector[Float], DenseVector[Float]]

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    Constructs a pipeline that fits this estimator to training data, then applies the resultant transformer to the Pipeline input.

    data

    The training data

    returns

    A pipeline that fits this estimator and applies the result to inputs.

    Definition Classes
    Estimator

Inherited from Logging

Inherited from Estimator[DenseVector[Float], DenseVector[Float]]

Inherited from EstimatorOperator

Inherited from Serializable

Inherited from Serializable

Inherited from Operator

Inherited from AnyRef

Inherited from Any

Ungrouped